Solution of Some Max–Separable Optimization Problems with Inequality Constraints

نویسنده

  • Karel Zimmermann
چکیده

Let R be the set of real numbers, ⊕ is the maximum operation so that α⊕ β = max{α, β} for any α, β ∈ R. We assume further that Rn ≡ R× . . .×R (n-times, the Cartesian product). We shall solve optimization problems consisting in the minimization of function F (f(x), g(y)), where F : R2 → R1 is an isotone function and function f(x), f : Rn → R1 is defined as follows f(x) = f(x1, . . . , xn) = f1(x1)⊕ f2(x2)⊕ . . .⊕ fn(xn) where fj : R 1 → R1 are continuous for all j = 1, . . . , n, and g : Rk → R1 is an isotone function with respect to the relation ≤, i.e. y ′ ≤ y ⇒ g(y ) ≤ g(y′′). This function will be minimized under the constraints max 1≤j≤n rij(xj) = n ⊕ j=1 rij(xj) ≥ bi(y), x ≥ x, y ≥ y for all i = 1, . . . ,m, where rij(xj) are real continuous increasing functions of one variable for all i = 1, . . . ,m and j = 1, . . . , n and bi(y) are isotone in y with respect to ≤ for all i = 1, . . . ,m and x, y are given finite lower bounds. As special examples, so called (⊕,⊗)-linear optimization problems in the so called (⊕,⊗)-algebras with (⊕,⊗) = (max,+) and (⊕,⊗) = (max,min) will be considered (more details about the (⊕,⊗)-algebras can be found e.g. in [3]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separable programming problems with the max-product fuzzy relation equation constraints

In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The ...

متن کامل

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

متن کامل

LP problems constrained with D-FRIs

In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Dombi family of t-norms is considered as fuzzy composition. Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of ...

متن کامل

Linear programming on SS-fuzzy inequality constrained problems

In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed...

متن کامل

RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...

متن کامل

Linear optimization on Hamacher-fuzzy relational inequalities

In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose members are decreasing functions of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004